Search This Blog

Tuesday, June 6, 2017

Stem Cell Treatment May Restore Vision to Patients with Damaged Corneas

Newswise, June 6, 2017 — Researchers working as part of the University of Georgia’s Regenerative Bioscience Center have developed a new way to identify and sort stem cells that may one day allow clinicians to restore vision to people with damaged corneas using the patient’s own eye tissue. They published their findings in Biophysical Journa

The cornea is a transparent layer of tissue covering the front of the eye, and its health is maintained by a group of cells called limbal stem cells. But when these cells are damaged by trauma or disease, the cornea loses its ability to self-repair.

“Damage to the limbus, which is where the clear part of the eye meets the white part of the eye, can cause the cornea to break down very rapidly,” said James Lauderdale, an associate professor of cellular biology in UGA’s Franklin College of Arts and Sciences and paper co-author.

“The only way to repair the cornea right now is do a limbal cell transplant from donated tissue.”

In their study, researchers used a new type of highly sensitive atomic force microscopy, or AFM, to analyze eye cell cultures. Created by Todd Sulchek, an associate professor of mechanical engineering at Georgia Tech, the technique allowed researchers to probe and exert force on individual cells to learn more about the cell’s overall health and its ability to turn into different types of mature cells.

They found that limbal stem cells were softer and more pliable than other cells, meaning they could use this simple measure as a rapid and cost-effective way to identify cells from a patient’s own tissue that are suitable for transplantation.

“Todd’s technology is unique in the tiniest and most sensitive detection to change,” said Lauderdale. “Just think about trying to gently dimple or prod the top of an individual cell without killing it; with conventional AFM it’s close to impossible.”

Building on their findings related to cell softness, the research team also developed a microfluidic cell sorting device capable of filtering out specific cells from a tissue sample.

With this device, the team can collect the patient’s own tissue, sort and culture the cells and then place them back into the patient all in one day, said Lauderdale. It can take weeks to perform this task using conventional methods.

The researchers are quick to caution that more tests must be done before this technique is used in human patients, but it may one day serve as a viable treatment for the more than 1 million Americans that lose their vision to damaged corneas every year.

The group first started this research with the hope of helping children with aniridia, an inherited malformation of the eye that leads to breakdown of the cornea at an early age.

Because aniridia affects only one in 60,000 children, few organizations are willing to commit the resources necessary to combat the disease, Lauderdale said.

“Our first goal in working with such a rare disease was to help this small population of children, because we feel a close connection to all of them,” says Lauderdale, who has worked with aniridia patients for many years.

“However, at the end of the day this technology could help hundreds of thousands of people, like the military who are also interested in corneal damage, common in desert conditions.”

Steven Stice, a Georgia Research Alliance Eminent Scholar, who plays an important role in fostering cross-interdisciplinary collaboration as director of the RBC, initially brought the researchers together and encouraged a seed grant application through the center for Regenerative Engineering and Medicine, or REM, a joint collaboration between Emory University, Georgia Tech and UGA. “A culture is developing around seed funding that is all about interdisciplinary collaboration, sharing of resources, and coming together to make things happen,” said Stice.

“Government funding agencies place a high premium on combining skills and disciplines. We can no longer afford to work in an isolated laboratory using a singular approach.”

The REM seed funding program is intended to stimulate new, unconventional collaborative research and requires equal partnership of faculty from two of the participating institutions.

“We tend to get siloed experimentally,” says Lauderdale. “To a biologist like me, all cells are very different and all atomic force microscopes are the same. To an engineer like Todd it’s just the opposite.”

The study, “Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus,” is available at

Funding was provided by an NIH NIGMS Biotechnology Training Grant on Cell and Tissue Engineering, the Knights Templar Eye Foundation, the Center for Regenerative Engineering and Medicine, the Sharon Stewart Aniridia Research Trust and the NSF CMMI division.

Assessing the Impact of Stress in Age-Related Macular Degeneration

Newswise, June 6, 2017– Age-related macular degeneration (AMD), the leading cause of vision loss among older adults in the United States, is often associated with psychological stress. 

A simple stress rating scale (the Perceived Stress Scale) is a valid and useful way to evaluate the connection between stress and progressive vision loss from AMD, according to a study in the March issue of Optometry and Vision Science, the official journal of the American Academy of Optometry. The journal is published by Wolters Kluwer.

"Because AMD is an inflammatory disease, we are studying the link between inflammation, stress, and AMD treatment outcomes," reported Bradley E. Dougherty, OD, PhD, of The Ohio State University College of Optometry. "In the end, we hope to better understand how general well-being influences disease outcomes."

Measuring Stress May Aid in Assessing the Life Impact and Progression of AMD--Patients with vision loss in AMD experience high rates of stress, anxiety, and other problems, including depression. Less is known about the relationship between the stress that AMD patients experience and the severity of their disease—for example, whether stress can cause AMD to worsen or not.

The Perceived Stress Scale (PSS) is a well-established stress rating scale that can predict objective biological markers of stress, as well as the risk of stress-related diseases. In previous studies, the PSS has been shown to be predictive of general markers of inflammation, including C-reactive proteins. In the new study, Dr. Dougherty and colleagues extend the use of this survey to determine how well it measures perceived stress in patients with vision loss due to AMD.

One hundred thirty-seven patients with AMD, average age 82 years, completed the ten-question PSS. Using a technique called Rasch analysis, Dr. Dougherty and colleagues evaluated the PSS's performance as a stress measure in AMD. About half of the patients filled out the stress questionnaire on a day when they received injections of anti-VEGF antibodies—a relatively new treatment that can slow the progression of the "wet" form of AMD.

Nine of the ten questions normally used with the PSS performed well with the patient group studied. These nine items were also able to separate between patients with higher versus lower levels of perceived stress. For some PSS items, responses differed according to patient age and visual acuity level.

However, the overall PSS score was not significantly related to the patients' visual acuity level. Average visual acuity in the better eye for this group of AMD patients was 20/50, with a range from near normal to very low vision.

"A psychometrically sound, easy-to-administer questionnaire such as the PSS is important for use with patients with AMD, given the evidence for increased rates of psychological symptoms in the population," Dr. Dougherty and coauthors write.

They note that stress-reduction approaches—for example, "mindfulness" interventions—have led to improved outcomes in patients with various health conditions.

Dr. Dougherty and colleagues also note that stress may be associated with increased inflammation and that AMD is an inflammatory disease—raising the possibility that stress may contribute to disease progression.

Future studies using repeated assessments with the PSS and measurement of inflammatory markers might provide evidence on how perceived stress levels affect the risk of AMD progression and worsening vision loss.

Slow the Signs of Aging With Sun Protection

Dermatologist offers advice for spring breakers, staycationers and everyone in between

June 6, 2017— As the winter temperatures begin to thaw, many may be dreaming of a sun-drenched spring and summer, and some may be hoping to show off a tan. While these individuals may believe tanning makes them more beautiful, this habit can actually damage their skin in the long run.

“Ultraviolet radiation from the sun and indoor tanning beds not only can increase your risk of skin cancer but also can contribute to skin aging,” says board-certified dermatologist Arianne Shadi Kourosh, MD, MPH, FAAD, director of community health and co-director of the multiethnic skin clinic in the department of dermatology at Massachusetts General Hospital in Boston.

 “Moreover, other forms of radiation, such as heat and visible light, can negatively impact the skin, as can pollution, so protecting your skin from the environment can benefit both your health and appearance.”

According to Dr. Kourosh, environmental factors can damage the skin in multiple ways, from UVB rays causing sunburns and uneven pigmentation to UVA and infrared radiation penetrating more deeply into the skin to damage existing collagen and reduce collagen production, resulting in wrinkles and sagging skin.

Habitual UV exposure can cause blood vessels to become more prominent, causing skin redness, she says, while visible light and pollution can cause uneven skin tone, especially in darker skin types.

“Although there have been some impressive strides in anti-aging treatments, no one product or procedure can completely reverse the long-term effects of poor skin care decisions, and protective measures are the cornerstone of good skin care,” Dr. Kourosh says.

 “Fortunately, there are many sunscreen options available to help you protect yourself, including cosmetic products with SPF. The best sunscreen for each person will depend on many factors, including genetic makeup, environment and lifestyle considerations. A board-certified dermatologist can evaluate the unique needs of your skin and help you develop an appropriate sun protection plan.”

Since both types of UV rays can damage the skin, Dr. Kourosh says, it’s important to use a broad-spectrum sunscreen that provides both UVA and UVB protection, with an SPF of 30 or higher.

She recommends sunscreens containing the active ingredients zinc oxide or titanium dioxide as a good source of broad-spectrum protection suitable for sensitive skin. She also says formulations containing antioxidants may provide some protection against uneven skin tone and aging caused by free radical damage from infrared light, visible light and pollution.

Dr. Kourosh recommends utilizing protective clothing like hats and sunglasses, and she reminds those who will be spending an extended amount of time in the sun to reapply sunscreen every two hours, or after swimming or sweating.

While it’s especially important to be vigilant near sand, water and snow, which can reflect the sun’s rays, sun protection is necessary regardless of weather or location, as 80 percent of the sun’s UV rays can penetrate the skin even on cloudy days.

In addition to practicing sun protection, it’s important to avoid indoor tanning, which exposes users to harmful UV rays that can increase skin cancer risk and accelerate skin aging. Those who wish to look tan may want to consider a self-tanning product but should continue using sunscreen with it.

“Whether you’re on a beach vacation or your daily commute, it’s crucial to protect yourself from exposure to harmful UV rays on a regular basis,” Dr. Kourosh says.

 “If you want healthy, younger-looking skin, it’s better to prevent now than try to correct later. If you have questions about sun protection, talk to a board-certified dermatologist.”

Attitude, Lifestyle May Contribute to Skin Cancer Risk Among Latinos

Dermatologist advises Hispanic patients to be aware of their risk and take steps toward prevention, detection

Newswise, June 6, 2017 As the Hispanic population in the United States continues to grow, the incidence of skin cancer among this population is growing too. Moreover, Hispanic patients are more likely to be diagnosed with the disease in its more advanced stages, when it’s more difficult to treat.1

Many Latinos, however, don’t believe they’re at risk, according to board-certified dermatologist Maritza I. Perez, MD, FAAD, a clinical professor of dermatology at the Icahn School of Medicine at Mount Sinai in New York.

“The belief that Hispanic people don’t have to worry about skin cancer has existed among Latinos for generations,” she says. “They hear it from their parents and grandparents, and then they pass this belief on to their children.”

Exposure to ultraviolet radiation from the sun and indoor tanning beds is the most preventable skin cancer risk factor. Many Hispanic people, however, believe they’re protected from the sun because they have darker skin tones, Dr. Perez says, and those who get sunburned don’t realize that the damage to their skin is increasing their skin cancer risk.

As a result, Dr. Perez says, many Latinos don’t take steps to protect themselves from the sun’s harmful UV rays. Furthermore, she says, some Hispanic people go indoor tanning before spending time in the sun, under the false belief that a “base tan” will protect them.

She advises all her patients, regardless of skin color, to stay out of indoor tanning beds and protect themselves from the sun.

Because skin cancer is most treatable when detected early and Latinos are more likely to be diagnosed with the disease in its advanced stages, Dr. Perez says, it’s also important for this population to perform regular self-exams to look for new, changing or suspicious spots on their skin.

People with skin of color are prone to skin cancer in unusual areas — like on the palms of the hands and the soles of the feet, under the nails, and inside the mouth — so she recommends that Hispanic patients be especially vigilant in performing skin self-exams.

When melanoma, the deadliest form of skin cancer, is detected and treated before it reaches the lymph nodes, the five-year survival rate is 98 percent.2 “Early detection is vital for skin cancer survival,” Dr. Perez says. “And if you don’t look for changes on your skin, you won’t find them.”

While the Hispanic population’s attitude toward skin cancer plays a large role in the disease’s incidence among that population, this group’s access to dermatologic care is also an important factor, according to Dr. Perez.

Many Latino families are uninsured or underinsured, she says, so they may be less likely to see a dermatologist for a skin cancer evaluation.

Further, when Hispanic patients do visit the doctor, she says, skin cancer may not be top of mind during the visit, since the belief that these patients are not at risk for the disease is so pervasive.

To help combat these issues, the American Academy of Dermatology works to raise skin cancer awareness among the underserved Latino population through its Latino Outreach Program.

In addition to providing free skin cancer screenings, this program aims to educate low-income Latino outdoor workers about skin cancer prevention and detection.

The AAD recommends that everyone stay out of indoor tanning beds and protect themselves from the sun’s harmful UV rays by seeking shade, wearing protective clothing, and using a broad-spectrum, water-resistant sunscreen with an SPF of 30 or higher.

The AAD also encourages everyone to perform regular self-exams to check themselves for signs of skin cancer and ask a partner to help them examine hard-to-see areas. Those who notice anything changing, itching or bleeding on their skin should visit a board-certified dermatologist.

While these recommendations apply to all patients, Dr. Perez says, it’s especially important for Latino patients to understand their skin cancer risk, take steps to protect themselves and conduct regular skin self-exams.
“Everyone — no matter their skin color — is at risk for skin cancer,” she says, “so everyone should learn how to protect themselves from the sun and how to check their skin for suspicious spots.”

To learn more about skin cancer prevention and detection, or to find a free SPOTme® skin cancer screening in your area, visit

Colon Cancer: Early Detection Can Save Your Life

Newswise, June 6, 2017 — Colorectal cancer is the second leading cause of cancer death for men and women in the United States according to the American Cancer Society (ACS).

 In fact, the ACS estimates that 134,490 people in the United States were diagnosed with colorectal cancer in 2016, including 70,820 men and 63,670 women. In addition, the ACS estimates that 49,190 people, 26,020 men and 23,170 women, died from colorectal cancer in 2016.

According to Mitchell Rubinoff, M.D., Chair, Gastroenterology, Valley Medical Group, “In order to reduce the mortality rate of this disease, it is crucial for individuals to be aware of the signs of colon cancer—and not hesitate to have any cause for concern checked out as soon as possible. Early detection saves lives!”

What is Colon Cancer?
Often referred to together as colorectal cancer, colon cancer is cancer of the large intestine (colon), and rectal cancer is cancer of the last few inches of the colon. It most often begins as precancerous polyps on the inside lining of the colon. Colon polyps, as defined by the National Institutes of Health, are growths on the lining of your colon or rectum.

Who is At Risk?
Both men and women are at risk for developing colorectal cancer, even if they do not have any of the identifiable risk factors such as:• A family history of colorectal cancer• Being over age 50• Colorectal polyps• Genetic changes

Early Detection Through Screening Tests
“It is best to catch colorectal cancer before you become symptomatic. Doctors can actually prevent cancers from ever developing by removing polyps and they can cure more patients by diagnosing cancer at an early stage,” explains Dr. Rubinoff.

Possible screening tests for colorectal cancer include stool tests, colonoscopy, or virtual colonoscopy. A colonoscopy is an outpatient procedure that is used to try to detect colon polyps and remove them before they can become cancerous. Your doctor will work with you to decide which test is appropriate for your individual history and symptoms.

It is also important for individuals who are not showing any symptoms of colorectal cancer to go for routine screenings. The CDC states that “The U.S. Preventive Services Task Force recommends that adults age 50 to 75 be screened for colorectal cancer.

“The decision to be screened after age 75 should be made on an individual basis. If you are older than 75, ask your doctor if you should be screened. People at higher risk of developing colorectal cancer should begin screening at a younger age, and may need to be tested more frequently.”

Signs and Symptoms
There are many potential symptoms of colon cancer and it is important to note that there is a great deal of overlap between colon cancer’s symptoms and symptoms of other illnesses. And, while it is possible that your symptoms may be caused by something else, you should still be aware of what to look out for and make sure to see your doctor right away if you experience any of the following symptoms:
• A change in bowel habits, such as diarrhea, constipation, or narrowing of the stool, that lasts for more than a few days• A feeling that you need to have a bowel movement that is not relieved by doing so• Rectal bleeding• Dark stools, or blood in the stool (often, though, the stool will look normal)• Cramping or abdominal (belly) pain• Weakness and fatigue• Unintended weight loss

Recognizing these symptoms, which are outlined by the American Cancer Society, is the first step to early detection. Once you alert your doctor to these symptoms, you may be sent for screening tests to confirm a diagnosis.


You can help to prevent cancer by exercising, eating fresh fruits and vegetables, and maintaining a healthy weight. Be proactive and take charge of your health!

Saturday, June 3, 2017

Old Cells That Refuse to Die May Lead to Treatments for Age-Related Diseases

Newswise, June 3, 2017 — One of the things that happens to our bodies as we age is that certain cells start to accumulate.

So-called senescent cells – cells that “retire” and stop dividing but refuse to die – are always present, and they even serve some important functions, such as in wound repair. But in aging organs, these cells don’t get cleared away as they should, and they can clutter up the place. Dr. Valery Krizhanovsky of the Weizmann Institute of Science’s Department of Molecular Cell Biology is revealing just how these cells are tied to disorders of aging and why they refuse to go away.

His work is not only opening new windows onto the aging process, but is pointing to new directions in treatments for many of these disorders and diseases.

Research into cellular senescence has taken off in recent years, due to findings that show that clearing these cells from various parts of the body can reverse certain aspects of aging and disease processes.

Pharmaceutical industries have taken note, as well, of research that could lead to the development of drugs that might target senescent cells in specific organs or tissues.  

In basic research conducted on human cell cultures and on mice, Dr. Krizhanovsky and his team asked, “what, exactly, ties senescent cells to aging?” Are they, for example, a primary cause of age-related disease, or a side effect? And why don’t these cells die, despite being damaged, making the “clean-up crews” of the immune system clear them away?

The researchers hypothesized that the answer to the second question might lie in a family of cellular proteins that regulate a type of cell suicide known as apoptosis.

They identified two proteins in this family that prevent apoptosis and which were overproduced in the senescent cells. When they injected mice that had an extra supply of senescent cells with molecules that inhibit these two proteins, the cells underwent apoptosis and were then eliminated, and there were signs of improvement in the tissue.

“In small amounts, these cells can prevent tumors from growing, help wounds clot, and start the healing process,” says Dr. Krizhanovsky. “But as they amass, they trigger inflammation and even cancer.”

Certain common age-related diseases have been shown to be associated with this buildup of senescent cells – for example, chronic obstructive pulmonary disease (COPD) – and Dr. Krizhanovsky is hoping to apply these findings to research into treatments for such diseases.

The trick, he says, will be to target the offensive cells without causing undue side effects. He has been developing mouse models of COPD and asking whether clearing senescent cells from just the lungs can prevent or ease the disease. Yeda Research and Development, Co., Ltd., the Weizmann Institute’s technology transfer arm, is working with Dr. Krizhanovsky to patent and license his discoveries. 

Another Reason to Exercise: Burning Bone Fat – a Key to Better Bone Health UNC School of Medicine researchers use new imaging methods

Newswise, June 3, 2017 – It’s a fat-burning secret anyone interested in bone health should know. For the first time, UNC School of Medicine researchers show that exercising burns the fat found within bone marrow and offers evidence that this process improves bone quality and the amount of bone in a matter of weeks. 

The study, published in the Journal of Bone and Mineral Research, also suggests obese individuals – who often have worse bone quality – may derive even greater bone health benefits from exercising than their lean counterparts.

“One of the main clinical implications of this research is that exercise is not just good, but amazing for bone health,” said lead author Maya Styner, MD, a physician and assistant professor of endocrinology and metabolism at the University of North Carolina at Chapel Hill.

“In just a very short period of time, we saw that running was building bone significantly in mice.”

Although research in mice is not directly translatable to the human condition, the kinds of stem cells that produce bone and fat in mice are the same kind that produce bone and fat in humans.
In addition to its implications for obesity and bone health, Styner said the research also could help illuminate some of the factors behind bone degradation associated with conditions like diabetes, arthritis, anorexia, and the use of steroid medications.

In her patients, Styner is all too familiar with the chronic toll of osteoporosis and fractures. This new evidence shows it’s possible to use exercise to reverse some of the effects on bones.

“I see a lot of patients with poor bone health, and I always talk to them about what a dramatic effect exercise can have on bones, regardless of what the cause of their bone condition is,” said Styner.

“With obesity, it seems that you get even more bone formation from exercise. Our studies of bone biomechanics show that the quality and the strength of the bone is significantly increased with exercise and even more so in the obese exercisers” 

Getting to the marrow of the matter
Bone and marrow are more dynamic than you might think. Marrow, in particular, is a hub of activity, coordinating the formation of bone and cartilage while simultaneously churning out blood cells, immune cells, and cancerous cells.

Marrow also produces fat, which has a lot to do with its vaunted status in cuisines around the world. But the physiological role of bone marrow fat in the body – and even whether it is beneficial or harmful for one’s health – has remained somewhat mysterious.

Generally, marrow fat has been thought to comprise a special fat reserve that is not used to fuel energy during exercise in the same way other fat stores are used throughout the body during exercise. The new study offers evidence to the contrary.

Styner’s work also offers fundamental insights on how marrow fat forms and the impact it has on bone health. Previous studies have suggested that a higher amount of marrow fat increases the risk of fractures and other problems.

“There’s been intense interest in marrow fat because it’s highly associated with states of low bone density, but scientists still haven’t understood its physiologic purpose,” said Styner.

“We know that exercise has a profound effect on fat elsewhere in the body, and we wanted to use exercise as a tool to understand the fat in the marrow.”

Vanishing fat cells
The researchers performed their experiments in two groups of mice. One group was fed a normal diet (lean mice) and the other received a high-fat diet (obese mice) starting a month after birth. When they were four months old, half the mice in each group were given a running wheel to use whenever they liked for the next six weeks. Because mice like to run, the group with access to a wheel tended to spend a lot of time exercising.

The researchers analyzed the animals’ body composition, marrow fat and bone quantity at various points. Predictably, the obese mice started with more fat cells and larger fat cells in their marrow.

 After exercising for six weeks, both obese and lean mice showed a significant reduction in the overall size of fat cells and the overall amount fat in the marrow. In these respects, the marrow fat of exercising obese mice looked virtually identical to the marrow fat of lean mice, even those that exercised.

Perhaps more surprising was the dramatic difference in the number of fat cells present in the marrow, which showed no change in lean mice but dropped by more than half in obese mice that exercised compared to obese mice that were sedentary. The tests also revealed that exercise improved the thickness of bone, and that this effect was particularly pronounced in obese mice.

According to Styner, all of this points to the conclusion that marrow fat can be burned off through exercise and that this process is good for bones.

“Obesity appears to increase a fat depot in the bone, and this depot behaves very much like abdominal and other fat depots,” said Styner. “Exercise is able to reduce the size of this fat depot and burn it for fuel and at the same time build stronger, larger bones.”

Setting the stage
The research leaves a few lingering mysteries. A big one is figuring out the exact relationship between burning marrow fat and building better bone. It could be that when fat cells are burned during exercise, the marrow uses the released energy to make more bone.

Or, because both fat and bone cells come from parent cells known as mesenchymal stem cells, it could be that exercise somehow stimulates these stem cells to churn out more bone cells and less fat cells.

More research will be needed to parse this out. “What we can say is there’s a lot of evidence suggesting that marrow fat is being used as fuel to make more bone, rather than there being an increase in the diversion of stem cells into bone,” said Styner.

But marrow fat, being encased in bone, isn’t easy to study. The team’s new research represents a leap forward not only in understanding bone marrow fat but also in the tools to study it.

The group’s previous work relied on micro CT imaging, which requires the use of a toxic tracer to measure marrow fat. In the new study, they took advantage of UNC’s 9.4 TMRI, a sophisticated MRI machine of which there are only a few around the country.

Using MRI to assess marrow fat eliminates the need for the toxic tracer and allows highly detailed imaging of living organisms. 

“If we want to take this technique to the human level, we could study marrow fat in humans in a much more reliable fashion now,” said Styner. “And our work shows this is possible.”

The team also developed techniques to perform a much more detailed assessment of the number and size of fat cells within the marrow, and even examined some of the key proteins involved in the formation and reduction of bone marrow fat.

Styner is now working with collaborators to adapt these methods for studying the bone marrow dynamics that might be at work in other conditions, including anorexia and post-menopausal osteoporosis.