Newswise, June 23, 2016— Every year as
mosquito season arrives, so does West Nile virus, causing fever in thousands of
people nationwide and life-threatening brain infections in an unlucky few.
About half the people who survive that infection – West Nile encephalitis – are
left with permanent neurological deficits such as memory loss.
New research shows that these long-term
neurological problems may be due to the patient’s own immune system destroying
parts of their neurons, which suggests that intervening in the immune response
may help prevent brain damage or help patients recover.
The study is published June 22 in Nature.
Since 1999, when West Nile arrived in the
Western Hemisphere via an infected flamingo in the Bronx Zoo, the virus has
spread throughout the Americas, infecting millions of people.
Ten thousand West Nile survivors are living
with long-term neurological problems such as fatigue, weakness, difficulty
walking and memory loss, and the number goes up by about a thousand every year
following mosquito season. There is no vaccine or specific treatment for West
Nile infection.
“When I talk with other doctors about West
Nile patients with these persistent neurological deficits, many say, ‘The virus
in their brains must have killed neurons, and there’s nothing we can do about
it,’” said Robyn Klein, MD, PhD, a professor of medicine and the study’s senior
author.
“My thinking has been, if we can determine
what triggers this brain damage, maybe we can prevent this from happening or
stop it afterwards.’”
Klein, postdoctoral researcher Michael
Vasek, PhD, and colleagues developed a mouse model of West Nile encephalitis by
injecting a weakened strain of the virus directly on top of the mouse
hippocampus, a region of the brain important for memory.
A month after the mice had recovered from
the infection, the researchers tested the animals’ ability to navigate a maze.
Much like West Nile survivors who cannot
navigate their neighborhood, the infected mice could not remember how to
navigate the maze. But contrary to conventional wisdom, their hippocampal
neurons hadn’t been killed by the virus.
Instead, the researchers found that microglial
cells, a kind of immune cell that lives in the brain, were clustered around the
neurons at the site of infection and were highly activated – “on fire,” as
Klein put it.
Moreover, levels of an immune protein
called complement were high in the brains of mice with memory loss. Neurons
make connections to each other at junctions called synapses, allowing
information to be passed from cell to cell. During normal brain development,
many more synapses are formed than needed and only those that are strengthened
should persist. Complement tags the weak synapses to be removed, and activated
microglia destroy them.
In the mice with memory loss, viral
infection seems to have sent this system into overdrive, leading to the
destruction of needed synapses. Synapses must be formed or strengthened for
learning and memory to occur.
While the neurons near the activated
microglia were still alive, they were lacking synapses. The more synapses that
were destroyed, the worse the mouse’s memory problems.
“There’s never been any model of cognitive
dysfunction due to brain infection that shows that eliminating synapses without
loss of neurons could cause these symptoms,” said Klein, who is also a
professor of pathology and immunology, and of neurosciences.
“It’s really a paradigm-shifting idea that
a viral infection can do this. It also makes us wonder whether these mechanisms
are involved in other diseases associated with memory loss.”
Healthy people create new synapses
throughout life as they learn new things. West Nile survivors, however, may be
unable to grow new synapses to replace the ones lost during their bouts of
encephalitis.
“The microglia remain activated long after
the virus is cleared, and this may be preventing the synapses from recovering,”
Klein said. “But that gives us hope that we can develop interventions directed
at the immune response. We think we can treat this. And that’s what we’re
trying to do.”
No comments:
Post a Comment