Newswise, January 16, 2017--
Sunlight allows us to make vitamin D, credited with healthier living, but a
surprise research finding could reveal another powerful benefit of getting some
sun.
Georgetown University Medical Center researchers have found that sunlight, through a mechanism separate than vitamin D production, energizes T cells that play a central role in human immunity.
Their findings, published today in Scientific Reports, suggest how the skin, the body’s largest organ, stays alert to the many microbes that can nest there.
“We all know sunlight provides
vitamin D, which is suggested to have an impact on immunity, among other
things. But what we found is a completely separate role of sunlight on
immunity,” says the study’s senior investigator, Gerard Ahern, PhD, associate
professor in the Georgetown’s Department of Pharmacology and Physiology.
“Some of the roles attributed to
vitamin D on immunity may be due to this new mechanism.”
They specifically found that low
levels of blue light, found in sun rays, makes T cells move faster — marking
the first reported human cell responding to sunlight by speeding its pace.
“T cells, whether they are helper or
killer, need to move to do their work, which is to get to the site of an
infection and orchestrate a response,” Ahern says.
“This study shows that sunlight
directly activates key immune cells by increasing their movement.”
Ahern also added that while
production of vitamin D required UV light, which can promote skin cancer and
melanoma, blue light from the sun, as well as from special lamps, is safer.
And while the human and T cells they
studied in the laboratory were not specifically skin T cells — they were
isolated from mouse cell culture and from human blood — the skin has a large
share of T cells in humans, he says, approximately twice the number circulating
in the blood.
“We know that blue light can reach
the dermis, the second layer of the skin, and that those T cells can move throughout
the body,” he says.
The researchers further decoded how
blue light makes T cells move more by tracing the molecular pathway activated
by the light.
What drove the motility response in
T cells was synthesis of hydrogen peroxide, which then activated a signaling
pathway that increases T cell movement.
Hydrogen peroxide is a compound that
white blood cells release when they sense an infection in order to kill
bacteria and to “call” T cells and other immune cells to mount an immune
response.
“We found that sunlight makes
hydrogen peroxide in T cells, which makes the cells move. And we know that an
immune response also uses hydrogen peroxide to make T cells move to the
damage,” Ahern says. “This all fits together.”
Ahern says there is much work to do
to understand the impact of these findings, but he suggests that if blue light
T cell activation has only beneficial responses, it might make sense to offer
patients blue light therapy to boost their immunity.
Study co-authors include lead
investigator Thieu X. Phan, PhD, Barbara Jaruga, PhD, Sandeep C. Pingle, PhD,
and Bandyopadhyay, PhD, all from the Georgetown University Medical Center’s
Department of Pharmacology and Physiology.
The authors report having no
personal financial interests related to the study.
The study was supported by a pilot
grant from the National Multiple Sclerosis Society.
No comments:
Post a Comment